
MPC-Wrapper: Fully Harnessing the Potential of
Samsung Aquabolt-XL HBM2-PIM on FPGAs

Jinwoo Choi∗1, Yeonan Ha∗1, Hanna Cha∗, Seil Lee∗, Sungchul Lee∗, Jounghoo Lee∗,
Shin-haeng Kang†, Bongjun Kim‡, Hanwoong Jung‡, Hanjun Kim∗, and Youngsok Kim∗§

∗Yonsei University †Samsung Electronics ‡Samsung Advanced Institute of Technology

{jinwoo1029, yeonan, hanna.cha, seil.lee, sungchul lee, jounghoolee}@yonsei.ac.kr,

{s-h.kang, bj90.kim, hw7884.jung}@samsung.com, {hanjun, youngsok}@yonsei.ac.kr

Abstract—Processing-In-Memory (PIM) is an attractive solu-
tion for mitigating frequent and large data movement between
computational units and memory devices. Among various PIM
implementations, Samsung Aquabolt-XL is an HBM2 memory
device which implements 16 PIM-enabled pseudo-channels and
associates an In-Memory Processor (IMP) to each pair of the
memory banks. Recent studies have shown that Aquabolt-XL
can greatly accelerate various applications (e.g., deep learning)
by offloading memory-intensive operations (e.g., matrix-vector
multiplications) to the IMPs. However, the prior study fails to
fully utilize Aquabolt-XL and achieves limited performance gains
by offloading operations to the IMPs of only a single pseudo-
channel. Ideally, utilizing all the 16 pseudo-channels of Aquabolt-
XL can further accelerate the key operations by a factor of
16× compared to utilizing only a single pseudo-channel. To fully
exploit Aquabolt-XL, therefore, memory-intensive operations
should be offloaded to and concurrently executed on the IMPs
of all the PIM-enabled pseudo-channels.

This paper presents MPC-Wrapper, a multi-pseudo-channel
wrapper interface which allows memory-intensive operations to
be offloaded to and concurrently executed on the IMPs of all the
16 PIM-enabled pseudo-channels of Aquabolt-XL. First, MPC-
Wrapper allows all the PIM-enabled pseudo-channels to operate
independently and in parallel, thus achieving high scalability
needed for fully utilizing all the PIM-enabled pseudo-channels
of Aquabolt-XL. Second, MPC-Wrapper is highly flexible as it
exposes the PIM-enabled pseudo-channels as separate ports and
enables an FPGA logic to flexibly utilize any set of the PIM-
enabled pseudo-channels according to its needs. Third, MPC-
Wrapper achieves high usability by hiding the complex low-level
interactions between the memory controller and Aquabolt-XL for
initializing and invoking the PIM-enabled pseudo-channels from
the other FPGA logics. Using an Aquabolt-XL-equipped Xilinx
Alveo U280 FPGA and four memory-intensive benchmarks, we
show that utilizing all the 16 PIM-enabled pseudo-channels of
Aquabolt-XL with MPC-Wrapper achieves a geometric mean
speedup of 13.66× over the baseline single PIM-enabled pseudo-
channel implementations of the benchmarks.

I. INTRODUCTION

Emerging memory-intensive applications, large-scale deep

learning (e.g., recommendation [1], translation [2]) in partic-

ular, incur frequent memory accesses and extensively utilize

large-scale datasets. Among possible solutions for mitigating

the memory wall, Processing-In-Memory (PIM) has emerged

as a practical solution as it can significantly reduce the

data movement between memory devices and computational

1Co-first authors§Corresponding author

units [3]–[13]. PIM-enabled memory devices [14]–[17] im-

plement In-Memory Processors (IMPs) located near their

memory banks and allow memory-intensive operations to be

offloaded onto the IMPs. The offloaded operations then can

directly access the data stored in the memory banks, allowing

applications to exploit the abundant bank-level parallelism

of the memory devices. For example, recent studies [16]–

[18] employ Aquabolt-XL [16], [17], Samsung’s commodity

High-Bandwidth Memory (HBM)-based PIM-enabled memory

device, on Field-Programmable Gate Arrays (FPGAs) and

accelerate memory-intensive deep learning applications (e.g.,

RNN-T [19]) by offloading element-wise additions and matrix-

vector multiplications from the FPGA logic onto the IMPs.

Despite achieving large performance improvements, we find

that the existing PIM acceleration study [18] using Aquabolt-

XL fails to fully exploit the memory device and thus achieves

limited performance, scalability, and applicability. The existing

study offloads their target memory-intensive operations onto

the IMPs of only a single PIM-enabled pseudo-channel of

Aquabolt-XL. However, Aquabolt-XL is equipped with a total

of 16 PIM-enabled pseudo-channels and 128 IMPs, and the

existing study limits its performance gains and scalability.

Ideally, utilizing all the 16 PIM-enabled pseudo-channels of

Aquabolt-XL would provide an additional speedup of 16×

over utilizing only a single PIM-enabled pseudo-channel. In

addition, the existing study implements and handles all the

complex low-level interactions with Aquabolt-XL’s pseudo-

channel within the application-side FPGA logic. Imposing the

huge burden of considering and implementing all the complex

low-level interactions to applications significantly degrades the

applicability and generality of the existing study.

In this paper, we present MPC-Wrapper, a multi-pseudo-

channel wrapper interface designed to maximize the benefits

of Aquabolt-XL on FPGAs. To the best of our knowledge, this

paper is the first study fully harnessing all the 16 PIM-enabled

pseudo-channels of Aquabolt-XL with the FPGA. MPC-

Wrapper allows memory-intensive applications to fully utilize

all the available PIM-enabled pseudo-channels of Aquabolt-

XL as follows. First, MPC-Wrapper allows the PIM-enabled

pseudo-channels to operate independently and in parallel. By

utilizing all the PIM-enabled pseudo-channels, MPC-Wrapper

overcomes the prior study’s limited performance improve-

ments and scalability achieved with only a single PIM-enabled

162

2024 IEEE 32nd Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/24/$31.00 ©2024 IEEE
DOI 10.1109/FCCM60383.2024.00027

pseudo-channel. Second, MPC-Wrapper exposes all the PIM-

enabled pseudo-channels as separate ports to the FPGA logic.

According to its needs, the FPGA logic can flexibly utilize

any set of the PIM-enabled pseudo-channels, and thus can

execute varying PIM operations on different sets of the PIM-

enabled pseudo-channels. Third, MPC-Wrapper hides all the

complex low-level interactions between the memory controller

and Aquabolt-XL from the FPGA logic. This allows MPC-

Wrapper to achieve high usability as the applications can easily

offload their operations to the PIM-enabled pseudo-channels

without implementing the low-level interactions.

Using an Aquabolt-XL-equipped Xilinx Alveo U280 FPGA,

we show that MPC-Wrapper makes memory-intensive appli-

cations easily exploit the large potential of Aquabolt-XL. We

demonstrate the high effectiveness of MPC-Wrapper using

three key operations of deep learning models (embedding

lookup, matrix-vector multiplication, matrix-matrix multiplica-

tion) and an end-to-end deep learning model (Alibaba’s recom-

mendation model [20]). To provide a useful guideline on accel-

erating memory-intensive applications with Aquabolt-XL, we

present in-depth descriptions on how the four benchmarks have

been implemented and parallelized to utilize multiple PIM-

enabled pseudo-channels. In particular, we show that overlap-

ping the executions of the FPGA logic and the PIM-enabled

pseudo-channels is essential for mitigating the synchronous

operating architecture of the PIM-enabled pseudo-channels.

Our evaluation using the Aquabolt-XL-equipped FPGA and

the four benchmarks first shows that MPC-Wrapper achieves

a geometric mean speedup of 13.66× over the baseline PIM

implementations, which utilize only a single PIM-enabled

pseudo-channel, by exploiting all the 16 PIM-enabled pseudo-

channels. The evaluation then shows that, compared to the

non-PIM implementations utilizing 16 pseudo-channels of the

standard HBM2 memory device, MPC-Wrapper achieves a

geometric mean speedup of 5.19×. After that, the evaluation

demonstrates MPC-Wrapper’s ability to concurrently acceler-

ate multiple benchmarks without incurring any performance

degradation due to resource sharing by allocating disjoint sets

of the PIM-enabled pseudo-channels to the benchmarks.

In summary, this paper makes the following contributions:

• We show that the prior study on Aquabolt-XL utilizes

only a single PIM-enabled pseudo-channel, and thus

attains limited performance, scalability, and applicability.

• We propose MPC-Wrapper, a flexible and scalable multi-

pseudo-channel wrapper interface for Aquabolt-XL which

allows all the 16 pseudo-channels of Aquabolt-XL to

operate independently and in parallel.

• We reveal that, with MPC-Wrapper, overlapping the exe-

cutions of the FPGA logic and the PIM-enabled pseudo-

channels is essential to mitigate the synchronous operat-

ing architecture of the PIM-enabled pseudo-channels.

• We implement MPC-Wrapper on an Aquabolt-XL-

equipped Xilinx Alveo U280 FPGA and show that MPC-

Wrapper achieves significant performance improvements

over the baseline single PIM-enabled pseudo-channel

implementations of the four representative benchmarks.

FPU

Buffer Die

PIM DRAM Die

TS
Vs

 &
 P

er
ip

he
ry

Bank PIM
Unit Bank

Bank PIM
Unit Bank

Bank PIM
Unit Bank

Control

Od
d

Ba
nk

Ev
en

 B
an

k

CRF / SRF

GR
F_

B

GR
F_

A

FP
16

AD
D

FP
16

M
UL

Commands Address

Bank PIM
Unit BankPIM DRAM Die

PIM DRAM Die

PIM DRAM Die

DRAM Die

Fig. 1: The internal architecture of Samsung Aquabolt-XL

II. BACKGROUND

A. Processing-In-Memory & Samsung Aquabolt-XL

Processing-In-Memory (PIM) is a promising solution for

overcoming the memory wall incurred by frequent data move-

ment between memory devices and computational units [3]–

[13]. Among a few commercial memory devices supporting

PIM, Samsung Aquabolt-XL [16], a PIM-enabled HBM2

memory device, places PIM units near its memory banks

to support PIM. Fig. 1 depicts the internal architecture of

Aquabolt-XL. It comprises a buffer die, four PIM-DRAM

dies, and four standard DRAM dies. The buffer die interacts

with the PIM-DRAM and the standard DRAM dies through

Through-Silicon Vias (TSVs). The PIM-DRAM dies and the

standard DRAM dies contain 64 memory banks each. Within

each of the four PIM-DRAM dies, a pair of the memory

banks is associated with a PIM unit. The PIM unit consists of

three major components: a 16-bit Floating-Point Unit (FPU)

capable of performing 16-wide Single-Instruction Multiple-

Data (SIMD) additions and multiplications, three Register

Files (RFs), and a control unit. The General RF (GRF)

and the Scalar RF (SRF) store the input and output data

of a SIMD operation. The Command RF (CRF) stores the

instructions needed by the PIM unit to perform a series of

SIMD operations. The control unit is in charge of retrieving the

instructions and metadata from a memory controller, executing

the instructions on using the FPU, and transferring the input

and output data between the RFs and the memory banks.

Aquabolt-XL groups the memory banks of its PIM-DRAM

and standard DRAM dies into 16 pseudo-channels. Each

pseudo-channel comprises 16 memory banks of the PIM-

DRAM dies and 16 memory banks of the standard DRAM

dies. This makes Aquabolt-XL provide 16 PIM-enabled

pseudo-channels, each consisting of eight PIM units. The

pseudo-channels can operate independently and in parallel.

Aquabolt-XL can act as both a standard HBM2 memory

device and a PIM device by configuring its pseudo-channels

to operate as one of the three following modes. First, the

Single-Bank (SB) mode makes a pseudo-channel act as that

of a standard HBM2 memory device. The SB-mode pseudo-

channels retrieve standard HBM2 commands (e.g., memory

reads and writes) from their memory controller(s) and process

the commands. Second, the All-Bank (AB) and the All-Bank-

PIM (AB-PIM) modes are used for offloading operations onto

the PIM units of a pseudo-channel. The memory controller

first sets a pseudo-channel to the AB mode to configure the

163

Pseudo-
Channel

FPGA
Logic

PIM
Mode
Switch

PIM
Done

FPU

SB
Mode

Program
CRF

Execute
PIM

PIM
Mode
Switch

PIM
Mode
Switch

PIM
Mode
Switch

PIM
Start

PIM inst.
PIM inst.

CRF

AB
Mode

AB-PIM
Mode

AB
Mode

AB
Mode

AB-PIM
Mode

SB
Mode

AB
Mode0x00000

0x10000

GRF/Bank

Result

GRF/Bank

Initialization Invocation Finalization

Control signal

Fig. 2: Procedure for offloading computation from the FPGA

logic onto the PIM units of Aquabolt-XL’s pseudo-channel

PIM units (e.g., upload a series of instructions for the PIM

units to their CRFs) and then switches the pseudo-channel to

the AB-PIM mode to make the PIM units execute the uploaded

instructions. In addition, due to the synchronous operating

architecture of the pseudo-channels in the AB mode and the

AB-PIM mode, all the memory banks of a pseudo-channel

operate synchronously and perform the same instruction given

to the pseudo-channel. Aquabolt-XL does not allow switching

from the SB mode directly to the AB-PIM mode for a pseudo-

channel; a pseudo-channel, currently in the SB mode, must be

switched to the AB mode first and then to the AB-PIM mode.

B. Offloading Computation onto Aquabolt-XL’s PIM Units

The FPGA logic can offload memory-intensive operations

onto the PIM units by leveraging the three operating modes

of Aquabolt-XL’s pseudo-channels. Fig. 2 illustrates a typical

procedure for offloading the operations onto the PIM units of a

pseudo-channel. The procedure largely consists of three stages:

initialization, invocation, and finalization. First, the initializa-

tion stage switches the pseudo-channel from the SB mode to

the AB mode, uploads a series of PIM instructions to the

CRFs, and then switches the pseudo-channel to the AB-PIM

mode. Then, in the invocation stage, the FPGA logic sends a

PIM invocation command to the PIM units which then execute

the instructions stored in their CRFs. The instructions make

the PIM units either perform FP16 additions/multiplications

on the FPUs or transfer data between the GRFs and the

memory banks. When the PIM units complete executing the

instructions, the pseudo-channel notifies the FPGA logic of

the completion. After that, the FPGA logic performs the

finalization stage by switching the pseudo-channel to the SB

mode and then reading out the output data stored in the

memory banks. In the remainder of this paper, we call an

FPGA IP block performing the described procedure as a PIM

interface, since the procedure can be seen as an interface

between the FPGA logic and the PIM units.

III. MOTIVATION

Recently, Kang et al. [18] study using Aquabolt-XL with

an FPGA. They accelerate RNN-T [19] by offloading the

matrix-vector multiplication operations of RNN-T from the

FPGA logic onto the PIM units of Aquabolt-XL. They show

that offloading the operations to Aquabolt-XL can achieve

large performance improvements over the baseline non-PIM

implementations attaching a standard HBM2 memory device.

Unfortunately, we find that the prior study [18], which utilizes

Aquabolt-XL on the FPGA, achieves suboptimal performance,

Non-PIM mplementation Baseline PIM mplementation

0.0

0.1

0.2

0.3

1 16

32 Tables

La
te

nc
y

[m
s]

#PC / Configuration

(a) Embedding

0.0

0.5

1.0

1.5

2.0

1 16

(2Kx2K)

#PC / Configuration

(b) GEMV

0

1000

2000

3000

4000

1 16

(2Kx2K) *
(2Kx2K)

#PC / Configuration

(c) GEMM

0

5

10

15

1 16
#PC / Configuration

(d) AliRM

Fig. 3: Execution latency of benchmarks on the non-PIM

implementation with various numbers of pseudo-channels (PC)

and the baseline PIM implementation

scalability, and applicability. The prior study focuses on only

one (out of 16) pseudo-channel, and thus achieves limited

performance and scalability by not fully exploiting the capabil-

ities of Aquabolt-XL. To overcome the limitations, the FPGA

logic should be able to utilize all the 16 pseudo-channels of

Aquabolt-XL, enhancing performance and scalability.

Fig. 3 illustrates the limited performance encountered when

employing only a single pseudo-channel of Aquabolt-XL. We

measure the execution latency of key operations in deep learn-

ing models (embedding lookup, matrix-vector multiplication,

matrix-matrix multiplication) and Alibaba’s recommendation

model (AliRM) on the baseline PIM implementation and the

non-PIM implementation. The baseline PIM implementation

uses a single pseudo-channel of Aquabolt-XL similar to the

prior study [18], whereas the non-PIM implementation utilizes

multiple pseudo-channels of the standard HBM2 memory de-

vice. The baseline PIM implementation shows faster execution

latency than the non-PIM implementation employing a single

pseudo-channel of the standard HBM2 memory device. How-

ever, it becomes slower when multiple pseudo-channels of the

standard HBM2 memory device are utilized. This slowdown

is attributed to the limited capabilities of a single pseudo-

channel in Aquabolt-XL. Utilizing all the pseudo-channels of

Aquabolt-XL ideally brings a speedup of 16× over utilizing

only a single pseudo-channel. By using all pseudo-channels

to overcome limited performance, Aquabolt-XL can enhance

performance in memory-intensive operations.

To fully harness the potential of Aquabolt-XL, the FPGA

logic has to execute multiple pseudo-channels independently

and in parallel. Since Aquabolt-XL has scalability where the

computational capability increases with the number of PIM

units used, the host should be capable of executing oper-

ations across multiple pseudo-channels. However, the prior

study’s approach can not be naı̈vely extended to multiple

pseudo-channels. When the FPGA logic uses multiple pseudo-

channels, it must undergo an address partitioning process, sep-

arating instructions and data based on the number of pseudo-

channels. This process involves converting them into pseudo-

channel-specific addresses and distributing them accordingly.

Consequently, the FPGA logic faces challenges in executing

pseudo-channels in parallel, as the address partitioning process

occurs each time the FPGA logic offloads operations to the

pseudo-channel. To fully exploit the capability of Aquabolt-

164

Aquabolt-XL

Pseudo-channel 0

Pseudo-channel 15

Pseudo-channel 1

PC Wrapper

PC Wrapper

PC WrapperScoreboard

Address
Partitioning

Tree-based PC Allocator

FPGA

Level Port

PC 0 Port

PC 15 Port

MPC-Wrapper

MPC Controller

Level 0 Level 1

PC 1 Port

Level 4

Pseudo-channel 14PC Wrapper
PC 14 Port

Fig. 4: Overview of MPC-Wrapper

XL, there is a need to offload the address partitioning process

from the FPGA logic and execute it only once, rather than

repeatedly, alleviating the burden of the FPGA logic and

enabling efficient parallelization of pseudo-channels.

To fully exploit all the pseudo-channels of Aquabolt-XL, the

FPGA logic must handle the PIM interface, which involves

all the complex low-level interactions with Aquabolt-XL.

As the usability of Aquabolt-XL bottoms out due to the

PIM interface’s overhead, the FPGA logic should be able to

easily use each pseudo-channel through high-level abstraction.

However, the prior study not only imposes the burden of

implementing and handling the PIM interface on the FPGA

logic but also lacks consideration for the adoption of multiple

pseudo-channels. To address the limitation, there is a need to

offload the PIM interface from the FPGA logic and introduce

dedicated logic to manage the essential process, enhancing

usability without considering the complex interactions.

IV. MPC-WRAPPER

A. Design Goals & Overview

We propose Multiple-Pseudo-Channel Wrapper (MPC-

Wrapper), a wrapper interface to fully harness the potential

of Aquabolt-XL by offloading operations onto all the pseudo-

channels and executing them independently and in parallel. To

the best of our knowledge, MPC-Wrapper is the first study to

utilize all the pseudo-channels of Aquabolt-XL on an FPGA.

Motivated by the limitations of the prior study, we set three

design goals for MPC-Wrapper. First, MPC-Wrapper must

achieve scalability that increases the computational capabilities

following the growth of the number of pseudo-channels. Sec-

ond, MPC-Wrapper should allow the FPGA logic to flexibly

utilize pseudo-channels according to its needs. Third, MPC-

Wrapper has to reduce the load on the FPGA logic caused by

managing the PIM interface.

Following these design goals, we construct MPC-Wrapper

with MPC Controller and Pseudo-Channel Wrappers (PC

Wrappers). Fig. 4 shows an overview of MPC-Wrapper. The

MPC Controller, which manages PC Wrappers, provides scal-

ability by enabling multiple pseudo-channels to operate inde-

pendently and in parallel. It also offers flexibility by exposing

all the pseudo-channels as separate ports, thus allowing the

FPGA logic to dynamically use the desired number of them

by configuring a set. The PC Wrappers enhance usability by

offloading the PIM interface from the FPGA logic. MPC-

Wrapper offers a seamless implementation with any FPGA

logic, allowing the FPGA logic to freely offload operations to

Aquabolt-XL through MPC-Wrapper. The generality provided

by MPC-Wrapper allows for effective utilization of Aquabolt-

XL regardless of a domain of the FPGA logic’s target appli-

cations and/or functions, enhancing the overall performance.

B. MPC Controller

MPC Controller is positioned between the FPGA logic and

the PC Wrappers, as illustrated in Fig. 4. To provide flexibility

to the FPGA logic, the MPC Controller exposes all the pseudo-

channels of Aquabolt-XL as separate ports. We expose as

many PC ports as the number of pseudo-channels. The number

of pseudo-channels required by the FPGA logic can vary

depending on the operation being performed. Through the

exposed ports, the MPC Controller enables the FPGA logic to

flexibly utilize any set of the pseudo-channels (PC set) based

on the desired number of pseudo-channels.

To configure a PC set, the MPC Controller employs a

scoreboard and a tree-based pseudo-channel allocator (PC

allocator). First, the scoreboard, employing a bit vector format,

indicates which pseudo-channels are available to the FPGA

logic through an exposed port. The MPC Controller updates

the scoreboard when the status of each pseudo-channel is

updated (i.e., busy or idle). Then, the FPGA logic can select

available pseudo-channels by assessing the scoreboard of the

MPC Controller and group them into a PC set. To easily

allocate appropriate pseudo-channels and configure the PC set,

we implement the PC allocator. As illustrated in Fig. 4, we

design the PC allocator using a binary tree logic, where each

pseudo-channel serves as a leaf node. We use a simple topol-

ogy (i.e., binary tree) to reduce wiring overhead and achieve

acceptable flexibility; implementing more fine-grained pseudo-

channel allocation requires complex all-to-all topologies and

incurs substantial wiring overhead. By providing a level value

through Level port to the MPC Controller, the FPGA logic

can easily configure the PC set its needs using the tree logic.

The MPC Controller allocates pseudo-channels corresponding

to leaf nodes of a subtree into the PC set. The subtree’s root

node is determined by selecting the node with the lowest index

among the available nodes at the given level. For example,

when the FPGA logic assigns 1 to the Level port, the PC

set consists of pseudo-channels 0 to 7, corresponding to the

leaf nodes of the subtree rooted at the level 1 node.

Through the PC ports, we can deploy instructions and data

to the designated pseudo-channels. When the FPGA logic

constructs a PC set, it only needs to deliver instructions and

data through the PC port with the lowest index in the set,

then the MPC Controller distributes them to the PC set.

This eliminates the need to configure and deploy them to

each individual PC port. Currently, with a single Aquabolt-

XL, we expose 16 PC ports. When the FPGA logic hopes

to use multiple Aquabolt-XLs, the MPC Controller exhibits

its capability to seamlessly scale out the PC allocator, the

scoreboard, and the number of PC ports to align with the total

number of pseudo-channels.

With such flexibility, the FPGA logic can execute various

PIM operations by allocating disjoint PC sets to different

165

PIM Interface Invoke MPC Wrapper

PC 0 Timeline
[cycle]

FPGA

0 338 676 1,014 1,352

(a) Sequential execution on a single PC

PC 0
PC 1
PC 2
PC 3

FPGA

Timeline
[cycle]0 338 676 1,014 1,352

(b) Sequential execution on four PCs

PC 0
PC 1
PC 2
PC 3

FPGA Free

Timeline
[cycle]0 3391

(c) Parallel execution on four PCs

Fig. 5: Execution timelines of embedding lookup operation on

four pseudo-channels (PCs)

operations. The FPGA logic only needs to specify the number

of pseudo-channels it needs. It invokes MPC-Wrapper once

with the deployment of instructions and data to the PC port

having the lowest index of each PC set.

In the prior study, the FPGA logic needs to perform

the address partitioning process each time to invoke the

pseudo-channel, as shown in Fig. 5a. However, in case the

FPGA logics incorrectly set the destination pseudo-channels

of their PIM instructions, the instructions will be incorrectly

delivered to the pseudo-channels, causing a memory address

conflict which can break the functional correctness. The inter-

connect in Xilinx HBM IP [21] identifies the target pseudo-

channel of memory requests using the five most-significant

bits (MSBs) of its memory address. To avoid memory ad-

dress conflicts, we implement the address partitioning process,

which sets the five MSBs of the PIM instructions to the

corresponding pseudo-channel’s base address. Nevertheless,

performance degradation does not occur because the prior

study uses only a single pseudo-channel. However, when we

naı̈vely scale out it to multiple pseudo-channels, the FPGA

logic sequentially utilizes the pseudo-channels due to the

address partitioning process at each time. Fig. 5b depicts the

timeline, which fails to leverage the advantages of Aquabolt-

XL’s scalability. To harness Aquabolt-XL’s scalability, we

should execute multiple pseudo-channels independently and

in parallel, as shown in Fig. 5c. By leveraging all the pseudo-

channels, we can ideally achieve a speedup of 16× compared

to utilizing a single pseudo-channel.

For the parallel execution, we employ an address par-

titioning logic within the MPC Controller. When multiple

FPGA logics share Aquabolt-XL, memory address conflicts

can occur. We design the address partitioning logic to pro-

hibit memory address conflicts among pseudo-channels and

automatically distribute instructions and data to the pseudo-

channels. Following the characteristics of Xilinx HBM IP [21],

the address partitioning logic of MPC-Wrapper remaps the

MSBs of a memory request and redirects the PIM instructions

to the appropriate pseudo-channels. By abstracting the address

MPC Controller

Tree-based PC Allocator

Level 0
Level 1

Scoreboard

Configure PC Set

Available PCs

Update

FPGA Logic

Provide Level 2

Level 2

Address
Partitioning

Send inst. & data PC Wrapper 0

Divide

PC Wrapper 1

PC Wrapper 2

PC Wrapper 3

PC Wrapper 15

PC Set

Deploy

Fig. 6: Working model of MPC Controller

partitioning process, the FPGA logic doesn’t need to perform

the address partitioning process at each time. The MPC

Controller enables the execution of pseudo-channels simulta-

neously by the address partitioning logic and broadcasting the

start signal to them. When the FPGA logic executes the PC set

and deploys instructions and data, the MPC Controller divides

them into addresses corresponding to each pseudo-channel

within the PC set. Therefore, MPC-Wrapper can operate all

the pseudo-channels through the parallel execution.

In the example scenario shown in Fig. 5c, the parallel

execution with four pseudo-channels by the MPC Controller

significantly reduces the execution latency of the embedding

lookup operation, resulting in almost 4× speedup, from 1,352

cycles down to 339 cycles. To execute pseudo-channels in

parallel, the procedure of the scoreboard, the PC allocator,

and the address partitioning is essential. However, it generates

a negligible overhead, just one cycle. The scoreboard takes a

cycle to update its bit vector and requires a register to hold

the status of pseudo-channels which depends on prior PIM

requests. The PC allocator is implemented using MUXes to

enable routing. Address partitioning logic is implemented by

hard-wiring an FPGA logic’s AXI requests to the assigned

pseudo-channels. So, the PC allocator and address partitioning

logic can be implemented as combinational logic. Therefore,

the parallel execution ensures scalability with effective utiliza-

tion of pseudo-channels, enhancing overall performance.

Fig. 6 illustrates a working model of the MPC Controller in

the same scenario as Fig. 5c. � The FPGA logic first assesses

the scoreboard to check which pseudo-channels are available.

After that, � the FPGA logic provides 2 to the Level port,

and � the PC allocator constructs a PC set with pseudo-

channels from 0 to 3. � The FPGA logic sends instructions

and data into PC 0 port, and � the address partitioning

logic divides them according to the allocated address of each

pseudo-channel. � The address partitioning logic deploys

divided instructions and data across the pseudo-channel 0 to

3 of the PC set. � After the MPC Controller updates the

scoreboard, it invokes the PC Wrappers.

C. PC Wrappers

The PC Wrappers of MPC-Wrapper provide high usability

to the FPGA logic by performing the PIM interface instead of

the FPGA logic. The PIM interface, described in Section II-B

as the complex low-level interactions, is an essential process

to use pseudo-channels. In the prior study, the FPGA logic has

to continuously handle the PIM interface.

166

MPC
Controller

FPGA
Logic

PC
Allocator

PC
Wrappers

Invoke
MPC

Wrapper

PIM
Done

PIM
Start

Control signal

MPC-
Wrapper PIM

Mode
Switch

Release
Score-
board

FPU

SB
Mode

Program
CRF

Execute
PIM

PIM
Mode
Switch

PIM
Mode
Switch

PIM
Mode
Switch

PIM inst.
PIM inst.

CRF

AB
Mode

AB-PIM
Mode

AB
Mode

AB
Mode

AB-PIM
Mode

SB
Mode

AB
Mode0x00000

0x10000

GRF/Bank

Result

GRF/Bank

PIM
Done

Address
Partitioning

Initialization Invocation Finalization

Pseudo-
Channels

Invoke
PC

Wrappers

Reserve
Score-
board

PC
Done

Check
PC set
Finish

Preparation

Fig. 7: Control flow of MPC-Wrapper

To provide high usability, we design the PC Wrappers

by implementing the procedure of the PIM interface as a

dedicated Finite State Machine (FSM) logic. The FSM logic

includes the same three stages of the PIM interface performed

by the FPGA logic: initialization, invocation, and finalization

stage. When the MPC Controller invokes the PC Wrappers,

they process the PIM interface following the FSM and control

the pseudo-channels instead of the FPGA logic. The PC

Wrappers deliver data configurations, such as input and output

data addresses, to the pseudo-channels. We implement 32 KB

of an SRAM buffer within each PC Wrapper for this purpose.

As the PIM interface should be performed per pseudo-channel,

we dedicate one PC Wrapper for each pseudo-channel. We

connect a PC Wrapper with the pseudo-channel through an

AXI interface. Then, the PC Wrapper informs the MPC

Controller of the pseudo-channel’s status.

D. Control Flow of MPC-Wrapper

Fig. 7 illustrates the control flow when the FPGA logic

utilizes multiple pseudo-channels of Aquabolt-XL with MPC-

Wrapper. In contrast to the complex procedure in the Sec-

tion II-B, the FPGA logic can simply invoke MPC-Wrapper.

In the preparation stage, MPC-Wrapper receives the level

value through the Level port to allocate pseudo-channels

to the PC set, and the MPC Controller configures the PC

set accordingly. Subsequently, the MPC Controller receives

instructions and data from the FPGA logic and performs the

address partitioning logic. It deploys the divided instructions

and data to PC Wrappers and updates the scoreboard to

indicate whether the pseudo-channels of the PC set are busy.

Then, the MPC Controller invokes the PC Wrappers belonging

to the PC set to execute the PIM interface.

In the initialization stage, the PC Wrappers process the

PIM interface. The initialization stage concludes with a mode

switch to the AB-PIM mode and programming the CRF. The

PC Wrappers proceed with the invocation stage, where the

pseudo-channel performs the PIM operations by accessing

data from the GRF or memory banks. After completing the

operation, the PC Wrappers perform a mode switch, update

the scoreboard to idle, and notify the MPC Controller of the

termination in the finalization stage. Once the PIM interface of

all PC Wrappers is finalized, the MPC Controller notifies the

FPGA logic that the PIM operations have finished. Through

this control flow, MPC-Wrapper effectively utilizes Aquabolt-

XL’s multiple pseudo-channels and relieves the FPGA logic

from the burden of managing the complex low-level interac-

tions. Also, MPC-Wrapper enables the FPGA logic to perform

other FPGA tasks while carrying out the PIM interface.

E. Resource Sharing & Asynchronous Execution

MPC-Wrapper can concurrently accelerate different oper-

ations by resource sharing without performance degradation.

For example, the FPGA logic intends to create two PC sets

to comprise eight pseudo-channels of Aquabolt-XL separately.

Then, the FPGA logic allocates the embedding lookup oper-

ation to one PC set and the GEMV operation to the other

one while deploying the corresponding instructions and data

to each PC set. Consequently, the pseudo-channels within

each PC set execute the designated operations independently

and in parallel. In other words, MPC-Wrapper’s flexibility

ensures applicability to utilize the pseudo-channels easily and

the performance improvement by resource sharing.

MPC-Wrapper enables asynchronous execution between the

pseudo-channels and the FPGA logic by taking over the

offloaded PIM interface from the FPGA logic. After the

invocation of MPC-Wrapper for offloading an operation, the

FPGA logic can execute a new operation immediately. Then,

the execution of the pseudo-channels and the new operation

of the FPGA logic are overlapped. Through the asynchronous

execution, MPC-Wrapper can improve the overall performance

as two operations are executed at the same time.

V. MULTI-PSEUDO-CHANNEL PARALLELIZATION

We describe how memory-intensive benchmarks are im-

plemented and parallelized with multiple pseudo-channels

of Aquabolt-XL using MPC-Wrapper. Benchmarks comprise

three key operations of deep learning models (i.e., embed-

ding lookup, matrix-vector multiplication, and matrix-matrix

multiplication) and an end-to-end deep learning model (i.e.,

Alibaba’s recommendation model). We provide the practical

implementation of the parallelization exploiting four pseudo-

channels of Aquabolt-XL and MPC-Wrapper as an example.

A. Embedding Lookup

Embedding lookup is a memory-intensive and crucial opera-

tion in deep learning models. It generates an embedding vector

167

PC 0
Banks

Table 0

PIM Units
Load

Table Entry

Lookup

Table Entry

Embedding
Vector

Accumulate

PC 1
Banks

Table 1

PIM Units

Lookup

PC 2
Banks

Table 2

PIM Units

Lookup

PC 3
Banks

Table 3

PIM Units

Lookup

Table Entry

Table Entry

Load

Table Entry

Table Entry

Embedding
Vector

Accumulate

Table Entry

Table Entry

Load

Table Entry

Table Entry

Embedding
Vector

Accumulate

Table Entry

Table Entry

Load

Table Entry

Table Entry

Embedding
Vector

Accumulate

Table Entry

Table Entry

(a) Embedding lookup

Banks

PIM Units
Vector

Streaming

PC 0

FPGA Logic

Banks

PIM Units
Vector

Streaming

PC 1
Banks

PIM Units
Vector

Streaming

PC 2
Banks

PIM Units
Vector

Streaming

PC 3

Reduction Operation

(b) GEMV

PC 0
Banks

PIM Units

FPGA Logic

Matrix A

PC 1
Banks

PIM Units

Matrix A

PC 2
Banks

PIM Units

Matrix A

PC 3
Banks

PIM Units

Matrix A

Streaming Streaming Streaming Streaming

Reduction Operation

(c) GEMM

Fig. 8: Multi-pseudo-channel parallelization of three memory-intensive benchmarks with MPC-Wrapper

by accumulating table entries from an embedding table. Since

the operations for each embedding table are independent, we

distribute embedding tables across multiple pseudo-channels

and execute the operations in parallel. To fully exploit multiple

pseudo-channels with MPC-Wrapper, we should implement

and parallelize the operation by evenly distributing embedding

tables across the pseudo-channels. Otherwise, some pseudo-

channels must wait for others, which have more tables, to

complete their operations. The load imbalance among the

pseudo-channels makes Aquabolt-XL underutilized and execu-

tion latency longer. In addition, if we distribute a table across

multiple pseudo-channels, the FPGA logic must load table

entries from these pseudo-channels into the FPGA’s buffer and

sum them up, resulting in much higher latency.

Fig. 8a illustrates how we implement and parallelize the

embedding lookup operation with MPC-Wrapper. The PC

Wrappers deploy instructions to the pseudo-channels, directing

the PIM units to look up the table based on the indices

of table entries provided by the FPGA logic. Subsequently,

the PIM units in each pseudo-channel load the table entries

from their memory banks. The embedding vector is generated

by accumulating these table entries and is written to the

memory banks. Then, the FPGA logic loads the embedding

vectors from the memory banks in each pseudo-channel. The

operation finishes without any additional operations by the

FPGA logic as the embedding tables are independent. Through

this parallelization, we can effectively exploit all the potential

of Aquabolt-XL and accelerate the operation.

B. Matrix-Vector Multiplication

General Matrix-Vector multiplication (GEMV) is a funda-

mental and extensively employed operation in deep learning

models. To execute the GEMV operation across multiple

pseudo-channels, it becomes imperative to distribute several

matrix rows across the pseudo-channels. Leveraging the fact

that generating a partial output vector from each matrix row is

independent, multiple pseudo-channels can execute the partial

GEMV operations independently and in parallel. For the

same reason as the embedding lookup operation, we evenly

distribute matrix rows to the pseudo-channels.

At the start of the operation, the PC Wrappers initially

store an input vector into the GRF of each pseudo-channel,

as shown in Fig. 8b. When the size of the input vector is

larger than the capacity of the GRF, the PC Wrappers divide

the input vector with respect to the capacity of the GRF.

Then, the PC Wrappers deploy the divided input vectors to

the pseudo-channel and execute the operation several times.

The partial matrix is stored in the memory banks of the

pseudo-channel. It is streamed into the PIM units and gets

calculated. When the pseudo-channel completes its allocated

partial GEMV operation, the partial output vector is stored

in the memory banks. Due to the characteristics of Aquabolt-

XL, it is infeasible for a pseudo-channel to access data of

the other pseudo-channels, necessitating the FPGA logic to

perform a reduction operation. The operation aggregates the

partial output vectors to get the output vector. The FPGA

logic loads these partial output vectors from the memory banks

of the pseudo-channels into an FPGA’s buffer and yields the

output vector through the reduction operation.

C. Matrix-Matrix Multiplication

General Matrix-Matrix multiplication (GEMM) is a crucial

operation in deep learning models to generate matrix C by

multiplying matrix A with matrix B. To perform the GEMM

operation using multiple pseudo-channels, the columns of

matrix B need to be distributed across the pseudo-channels.

Each pseudo-channel then carries out the matrix multiplication

with matrix A and its allocated partial matrix of matrix B
independently and in parallel. We ensure uniformity in the

operation across pseudo-channels by distributing the same

number of columns from matrix B.

The PC Wrappers store matrix A into the GRF of each

pseudo-channel. When the size of matrix A is over the capacity

of the SRAM buffer of the PC Wrapper, the FPGA logic

has to divide matrix A to fit within the SRAM buffer and

repeatedly invoke MPC-Wrapper with the partial matrices

of A divided by rows. Making PC Wrapper’s buffer larger

mitigates extended execution latency by repeated invocations.

However, this enhancement consumes more FPGA resources.

Hence, a trade-off exists between the execution latency and the

resource utilization. As illustrated in Fig. 8c, when starting the

operation, the PIM units stream the partial matrix B from the

memory banks and multiply two matrices. Then, they generate

and store the partial output matrix in the memory banks. After

168

FPGA Aquabolt-XL FPGA

PC 0

PC 1

PC 2

PC 3

Click
Probability

Embedding
Vectors

Embedding
Vectors

Embedding
Vectors

Embedding
Vectors

Feature
Interaction

User Input MicroRec

Scoreboard

Tree-based
PC Allocator

Address
Partitioning

MPC-
Wrapper

Embedding Lookup

Embedding Lookup

Embedding Lookup

Embedding Lookup

Fig. 9: Working model of AliRM [20] with MPC-Wrapper

all pseudo-channels complete their operations, the FPGA logic

loads the partial output matrices from the memory banks of

each pseudo-channel into the FPGA’s buffer. Subsequently,

it concludes the operation by generating the output matrix

through the reduction operation.

D. Alibaba’s Recommendation Model

To demonstrate MPC-Wrapper’s ability to accelerate end-to-

end deep learning models, we use Alibaba’s recommendation

model (AliRM) [20] and implement it using MicroRec [20],

a representative FPGA-based recommendation model accel-

erator. AliRM is a memory-intensive recommendation model

comprised of an embedding table lookup stage, feature in-

teraction, and MLP layer executed in sequence. MicroRec

is implemented to utilize all the available pseudo-channels

of a standard HBM2 memory device. To utilize the pseudo-

channels of Aquabolt-XL with MPC-Wrapper, we modify

MicroRec to connect with Aquabolt-XL’s pseudo-channels.

Fig. 9 shows a working model of AliRM with MPC-

Wrapper with the FPGA logic. As the execution latency of

the memory-intensive embedding table lookup stage occupies

a large portion of the entire models’ latency [20], [22], [23],

we offload the embedding lookup to Aquabolt-XL. Initially,

the FPGA logic checks which pseudo-channels are available

using the scoreboard. It configures the PC set by sending the

level value through the Level port to the MPC Controller.

Following this, the FPGA logic provides the user input (i.e.,

the indices of embedding table entries) required for AliRM

to MPC-Wrapper. The MPC Controller deploys the user input

and data configuration, like the input and output addresses,

to the PC Wrappers through the address partitioning logic.

Subsequently, the PC Wrappers deliver them to the connected

pseudo-channels and invoke the pseudo-channels to execute

the embedding table lookup operation independently and in

parallel. Once all the pseudo-channels complete the embed-

ding lookup operation, the FPGA logic loads the embedding

vectors from the pseudo-channels into the FPGA’s buffer. The

execution of AliRM gets completed by performing feature

interaction and the MLP layer within the FPGA logic.

VI. EVALUATION

A. Experimental Setup

To evaluate MPC-Wrapper, we employ a PIM system

equipped with an Intel i7-9700 CPU and an Aquabolt-XL-

equipped Xilinx Alveo U280 FPGA [24], as shown in Fig. 10.

The host CPU transfers data to Aquabolt-XL and controls the

FPGA logic through PCIe 3.0 interface [25], and the FPGA

Xilinx
Alveo U280

PCIe 3.0
x8

Samsung
Aquabolt-XL

Intel
i7-9700

Fig. 10: Aquabolt-XL-equipped Xilinx Alveo U280 FPGA

logic exploits Aquabolt-XL through our MPC-Wrapper. We

implement MPC-Wrapper using SystemVerilog and the FPGA

logic using VHDL and High-Level Synthesis (HLS). We

program the FPGA logic by Vivado 2023.1 [26]. We configure

Aquabolt-XL to operate with the maximum frequency (i.e.,

900 MHz [21]) and MPC-Wrapper to achieve an operating

frequency of 300 MHz. We make the FPGA logic not only

invoke MPC-Wrapper but also perform post-processing (e.g.,

reduction operation) by operating with the frequency of 300

MHz. To measure AliRM’s latency, we employ the open-

source MicroRec [20], which runs at 100 MHz. To assess

the benefits of Aquabolt-XL compared to a standard HBM2

memory device, we implement the non-PIM implementations

of the benchmarks of the standard HBM2 memory device.

Aimed at evaluating performance improvements and scala-

bility of MPC-Wrapper, we execute the benchmarks with the

baseline PIM implementations, which utilize only a single

pseudo-channel of Aquabolt-XL. As benchmarks, we use

three key operations of deep learning models (i.e., embedding

lookup, GEMV, and GEMM) and AliRM [20] with a batch

size of 32. Since Aquabolt-XL supports only the FP16 data

type, we employ an FP16 synthetic dataset for the three

key operations and a pre-trained FP16 dataset of MicroRec

for AliRM. We examine three configurations each for key

operations (e.g., 16, 32, and 48 tables for the embedding

lookup operation). In addition, we use the configuration of

AliRM as provided by its open-source implementation.

B. Large Speedup with MPC-Wrapper’s Scalability

In this experiment, we evaluate the performance improve-

ments and scalability of MPC-Wrapper. To perform an in-

depth study on the speedups, we measure the execution latency

of the PIM implementations of benchmarks using MPC-

Wrapper, varying the number of pseudo-channels from 1 to

16. Fig. 11 depicts the speedups of PIM implementations over

the baseline implementations. Overall, MPC-Wrapper achieves

a geometric mean speedup of 13.66× over the baseline PIM

implementation by employing all the 16 pseudo-channels. The

results demonstrate the scalability of MPC-Wrapper, showing

a linear increase in speedup with increased pseudo-channels.

MPC-Wrapper achieves geometric mean speedups of

13.98×, 15.27×, and 15.51× for the embedding lookup, GEMV,

and GEMM operations, respectively, utilizing all the 16

pseudo-channels. The speedup for the embedding lookup

operation is comparatively lower than those for the GEMV

and GEMM operations. The reason is that the invocation

169

0

4

8

12

16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

16 Tables 32 Tables 48 Tables (1Kx1K) *
1K

(2Kx2K) *
2K

(4Kx4K) *
4K

(1Kx1K) *
(1Kx1K)

(2Kx2K) *
(2Kx2K)

(4Kx4K) *
(4Kx4K)

Embedding lookup GEMV GEMM

Sp
ee

du
p

#PC / Configuration / Benchmark

(a) Key operations of deep learning models

0

2

4

6

8

1 2 4 8 16

#PC

(b) AliRM

0

4

8

12

16

1 2 4 8 16

#PC

(c) Geomean

Fig. 11: Speedups of MPC-Wrapper with varying pseudo-channel counts

0
2
4
6
8

10

1
6
 T

ab
le

s

3
2
T

ab
le

s

4
8
 T

ab
le

s

(1
K

x
1

K
)

(2
K

x
2

K
)

(4
K

x
4

K
)

(1
K

x
1
K

)
*

(1
K

x
1

K
)

(2
K

x
2
K

)
*

(2
K

x
2

K
)

(4
K

x
4
K

)
*

(4
K

x
4

K
)

A
li

R
M

G
eo

m
ea

n

Embedding GEMV GEMM . .

Sp
ee

du
p

Configuration / Benchmark

Fig. 12: Speedups of MPC-Wrapper over the baseline non-

PIM implementations with 16 pseudo-channels

stage is the only stage of the PIM interface affected by the

speedup of multiple pseudo-channels. Since the invocation

stage of the embedding lookup operation is shorter than those

of other operations, it shows a relatively lower speedup. For

AliRM, MPC-Wrapper achieves a speedup of 6.30×. The lower

speedup, compared to the other benchmarks, is attributed to

offloading only the embedding table lookup stage to Aquabolt-

XL. In addition, despite being the same operation in Fig. 11a,

the embedding table lookup stage of AliRM achieves a

lower speedup of 12.10×. This is attributed to the fact that

we implement the embedding lookup operation by equally

distributing tables across the pseudo-channels. Because the

embedding table lookup stage of AliRM includes 42 tables, the

baseline PIM implementation processes these tables 42 times.

Meanwhile, as the number of tables is not a multiple of the

number of pseudo-channels, the PIM implementation with 16

pseudo-channels operates three times, leaving some pseudo-

channels idle. Thus, the load imbalance among the pseudo-

channels makes a lower speedup than depicted in Fig. 11a.

Nevertheless, MPC-Wrapper gets notable speedups with all

the benchmarks and ensures the scalability of Aquabolt-XL.

C. Speedup over the Non-PIM Implementation

To assess the benefits of Aquabolt-XL exploiting its full

potential, we conduct a comparative analysis of execution

latency in two scenarios: the PIM and the non-PIM imple-

mentations. Fig. 12 shows a geometric mean speedup of 5.19×

achieved by MPC-Wrapper over the non-PIM implementation

employing all the 16 pseudo-channels of the standard HBM2

memory device. The higher speedup of the embedding lookup

operation is attributed to the fact that it accumulates the results

in the GRF. In contrast, the GEMV and GEMM operations

write back results to the memory banks when the size of the

results exceeds the GRF’s capacity.

Embedding lookup GEMV

Timeline
[cycle]

#
P

C

16
8
0

0 334 629

(a) Without resource sharing

Timeline
[cycle]

#
P

C

16
8
0

0 334 470

(b) With resource sharing

Fig. 13: Execution timelines of embedding lookup and GEMV

without and with resource sharing

Invoke MPC-Wrapper MLP layerEmbedding lookup stage

MPC-Wrapper
Aquabolt-XL

MicroRec
Timeline
[cycle]32,554 68,234 100,788 136,46810

(a) The synchronous execution
MPC-Wrapper

Aquabolt-XL
MicroRec

Timeline
[cycle]0 32,554 68,235 103,9151

(b) The asynchronous execution

Fig. 14: Execution timelines of two AliRM executions without

and with asynchronous execution

D. Resource Sharing

The embedding operation involves eight tables, and the

GEMV operation has a configuration of a 1K×128 matrix.

Fig. 13 shows that resource sharing achieves a speedup of

1.34× compared to the latency without resource sharing.

Without resource sharing, the two operations get executed in

sequence, utilizing 8 and 16 pseudo-channels, respectively.

This makes the embedding lookup operation leave the re-

maining eight pseudo-channels idle, as shown in Fig. 14a.

On the other hand, the FPGA logic constructs two PC sets

by resource sharing of MPC-Wrapper, each consisting of

eight pseudo-channels. Resource sharing improves the overall

performance and the utilization of Aquabolt-XL by allocating

the embedding lookup operation and the GEMV operation to

the respective PC sets and concurrently executing them.

E. Asynchronous Execution

Fig. 14 illustrates the execution timelines for an example

scenario where two AliRMs are performed synchronously and

asynchronously on Aquabolt-XL and MicroRec with MPC-

Wrapper. With the enhanced usability by MPC-Wrapper,

the asynchronous execution between Aquabolt-XL and the

MicroRec achieves a speedup of 1.31× compared to the

170

TABLE I: Resource utilization of MPC-Wrapper on the

Aquabolt-XL-equipped Xilinx Alveo U280 FPGA

Component LUT Register BRAM
MPC Controller 8,211 (0.63%) 14,416 (0.55%) 0 (0%)

PC Wrappers 51,349 (3.94%) 68,368 (2.62%) 120 (5.95%)

Total (MPC-Wrapper) 59,560 (4.57%) 82,784 (3.18%) 120 (5.95%)

MPC Controller PC Wrapper MicroRec Others

Fig. 15: Floorplan of MPC-Wrapper and MicroRec on the

Aquabolt-XL-equipped Xilinx Alveo U280 FPGA

synchronous execution. In the synchronous execution, we

invoke MPC-Wrapper for the start of the second AliRM after

the completion of the first AliRM execution. In contrast, the

asynchronous execution by MPC-Wrapper ensures an overlap

of the MLP layer of the first AliRM on MicroRec with

the embedding table lookup stage of the second AliRM on

Aquabolt-XL. The MLP layer of the first AliRM gets delayed

by only one cycle due to the invocation of MPC-Wrapper

to offload the second AliRM to Aquabolt-XL, which has a

negligible impact on the overall performance.

F. Hardware Implementation Costs

Table I shows the resource utilization of MPC-Wrapper, im-

plemented on the Aquabolt-XL-equipped Xilinx Alveo U280

FPGA using all 16 pseudo-channels. MPC-Wrapper demands

only a minimal amount of the FPGA resources. Although the

MPC Controller supports features such as the scoreboard, the

tree-based PC allocator, and the address partitioning logic,

it utilizes only slight resources. Similarly, the PC Wrappers,

which employ all the 16 pseudo-channels, also consume small

resources. They use LUTs and registers to execute the FSM

logic for the PIM interface and consume BRAMs less than

6% to store data deployed to the dedicated pseudo-channel.

With the addition of Aquabolt-XL equipment, although MPC-

Wrapper’s resource utilization might increase due to the

MPC Controller expansion and the scaling out of the PC

Wrappers and PC ports, we anticipate the increase to remain

insignificant. In addition, as shown in Fig. 15, the floorplan

comparison between MPC-Wrapper and MicroRec shows that

MPC-Wrapper requires considerably fewer resources than Mi-

croRec, which utilizes 26.60%, 8.23%, and 92.76% of LUTs,

registers, and BRAMs, respectively. It demonstrates that MPC-

Wrapper can be seamlessly integrated with any FPGA logic

(e.g., MicroRec) thanks to its slight resource usage.

VII. RELATED WORK

A. Commodity Processing-In-Memory Devices

UPMEM [14] and AxDIMM [27] are PIM-enabled DIMM

devices which place IMPs near memory banks or ranks. They

are compatible with the DIMM slots available on real systems

and can be used as a drop-in replacement for standard DIMMs.

Unlike Aquabolt-XL, the PIM-enabled DIMM devices require

byte-interleaving, leading to additional efforts for accurate

data usage by IMPs due to the DIMM’s characteristics. In

addition, AiM [15], which places a multiply-accumulate unit

adjacent to a memory bank, stands out as a representative

PIM-enabled GDDR6-based memory device that can function

as both a PIM device and a standard memory. However,

AiM necessitates the use of additional DRAM commands and

requires modifications to the host-side memory controller.

B. Leveraging Aquabolt-XL for Acceleration

Kang et al. [18] accelerate RNN-T [19], a translation

model, using an Aquabolt-XL-equipped Xilinx Alveo U280

FPGA. Although they utilize only a single pseudo-channel of

Aquabolt-XL, they are able to achieve significant performance

improvements by taking advantage of Aquabolt-XL, which

significantly reduce the data movement between memory

devices and computational units. We believe that RNN-T

can achieve more performance improvement by leveraging

all the 16 pseudo-channels using MPC-Wrapper. Moreover,

Kim et al. [28] study on GPUs equipped with Aquabolt-

XL. They demonstrate a significant overall performance im-

provement when GPT-J is executed on a single Aquabolt-XL-

equipped AMD MI100 GPU compared to an AMD MI100

GPU equipped with a standard HBM2 memory device. They

also build an Aquabolt-XL cluster, installing 96 Aquabolt-XL-

equipped AMD MI100 GPUs. Executing a Transformer-based

mixture of experts model on the Aquabolt-XL-equipped GPU

cluster results in a notable speedup compared to a non-PIM

GPU cluster. Unlike this work, they do not discuss the multiple

pseudo-channels of Aquabolt-XL and study on an FPGA.

VIII. CONCLUSION

We proposed MPC-Wrapper, a first novel approach de-

signed to fully harness the potential of Samsung Aquabolt-XL

by effectively utilizing all the PIM-enabled pseudo-channels.

Through the implementation of the MPC Controller, MPC-

Wrapper ensures scalability by enabling the parallel execution

of the pseudo-channels. The MPC Controller further provides

flexibility by exposing all the pseudo-channels as separate

ports, allowing the PC set to be configured dynamically.

In addition, MPC-Wrapper’s PC Wrappers enhance usability

by offloading the PIM interface from the FPGA logic and

managing the pseudo-channels. Our experimental results show

that MPC-Wrapper achieves a notable speedup of 13.66× over

the baseline single-pseudo-channel PIM implementations.

ACKNOWLEDGMENT

This work was supported by Samsung Advanced Institute

of Technology (SAIT). This work was also supported in part

by the National Research Foundation of Korea (NRF) under

Grant 2022R1C1C1008131 and the Institute of Information

& Communications Technology Planning & Evaluation (IITP)

under Grant 2020-0-01361.

171

REFERENCES

[1] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini, et al., “Deep
Learning Recommendation Model for Personalization and Recommen-
dation Systems,” arXiv preprint arXiv:1906.00091, 2019.

[2] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling
to Trillion Parameter Models with Simple and Efficient Sparsity,” The
Journal of Machine Learning Research, vol. 23, 2022.

[3] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact
of 3D-Stacked Memory+Logic Devices on MapReduce Workloads,” in
Proc. 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2014.

[4] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-Memory Accelerator for Parallel Graph Processing,” in Proc. 42nd
IEEE/ACM International Symposium on Computer Architecture (ISCA),
2015.

[5] C. Lim, S. Lee, J. Choi, J. Lee, S. Park, H. Kim, J. Lee, and Y. Kim,
“Design and Analysis of a Processing-in-DIMM Join Algorithm: A Case
Study with UPMEM DIMMs,” Proceedings of the ACM on Management
of Data (PACMMOD), vol. 1, 2023.

[6] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in Proc. 22nd ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2017.

[7] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
Centric Accelerator Design for Convolutional Neural Networks,” in
Proc. 31st IEEE International Conference on Computer Design (ICCD),
2013.

[8] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graph-
PIM: Enabling Instruction-Level PIM Offloading in Graph Computing
Frameworks,” in Proc. 23rd IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2017.

[9] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A Practical Near-
Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning,” in Proc. 52nd IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2019.

[10] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie, “iPIM:
Programmable In-Memory Image Processing Accelerator Using Near-
Bank Architecture,” in Proc. 47th IEEE/ACM International Symposium
on Computer Architecture (ISCA), 2020.

[11] C. Xie, S. L. Song, J. Wang, W. Zhang, and X. Fu, “Processing-in-
Memory Enabled Graphics Processors for 3D Rendering,” in Proc.
23rd IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2017.

[12] C. Xie, X. Zhang, A. Li, X. Fu, and S. Song, “PIM-VR: Erasing Motion
Anomalies In Highly-Interactive Virtual Reality World with Customized
Memory Cube,” in Proc. 25th IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2019.

[13] C. Xie, X. Li, Y. Hu, H. Peng, M. Taylor, and S. L. Song, “Q-VR:
System-Level Design for Future Mobile Collaborative Virtual Reality,”
in Proc. 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2021.

[14] F. Devaux, “The true Processing In Memory accelerator,” in Proc. 31th
IEEE Hot Chips Symposium (HCS), 2019.

[15] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi,
and T. Vijaykumar, “Newton: A DRAM-maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning,” in Proc. 53rd IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020.

[16] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, S. O, A. Iyer, D. Wang, K. Sohn, and N. S.
Kim, “Hardware Architecture and Software Stack for PIM Based on
Commercial DRAM Technology,” in Proc. 48th IEEE/ACM Interna-
tional Symposium on Computer Architecture (ISCA), 2021.

[17] J. H. Kim, S.-H. Kang, S. Lee, H. Kim, Y. Ro, S. Lee, D. Wang,
J. Choi, J. So, Y. Cho, J. Song, J. Cho, K. Sohn, and N. S. Kim,
“Aquabolt-XL HBM2-PIM, LPDDR5-PIM With In-Memory Processing,
and AXDIMM With Acceleration Buffer,” IEEE Micro, vol. 42, 2022.

[18] S. Kang, S. Lee, B. Kim, H. Kim, K. Sohn, N. S. Kim, and E. Lee, “An
FPGA-based RNN-T Inference Accelerator with PIM-HBM,” in Proc.
30th ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), 2022.

[19] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, et al., “Streaming End-To-
End Speech Recognition for Mobile Devices,” in Proc. 44th IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2019.

[20] W. Jiang, Z. He, S. Zhang, T. B. Preußer, K. Zeng, L. Feng, J. Zhang,
T. Liu, Y. Li, J. Zhou, et al., “MicroRec: Efficient Recommendation
Inference by Hardware and Data Structure Solutions,” Proceedings of
Machine Learning and Systems (MLSys), vol. 3, 2021.

[21] Xilinx, Inc., “AXI High Bandwidth Memory Controller LogiCORE
IP Product Guide (PG276),” 2022. https://docs.amd.com/r/en-US/
pg276-axi-hbm.

[22] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, et al., “Rec-
NMP: Accelerating Personalized Recommendation with Near-Memory
Processing,” in Proc. 47th IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2020.

[23] R. Jain, S. Cheng, V. Kalagi, V. Sanghavi, S. Kaul, M. Arunachalam,
K. Maeng, A. Jog, A. Sivasubramaniam, M. T. Kandemir, et al.,
“Optimizing CPU Performance for Recommendation Systems At-Scale,”
in Proc. 50th IEEE/ACM International Symposium on Computer Archi-
tecture (ISCA), 2023.

[24] Xilinx, Inc., “Alveo U280 Data Center Accelerator Card
User Guide (UG1314),” 2023. https://docs.amd.com/r/en-US/
ug1314-alveo-u280-reconfig-accel.

[25] J. Ajanovic, “PCI Express 3.0 Overview,” in Proc. 21th IEEE Hot Chips
Symposium (HCS), 2009.

[26] Xilinx, Inc., “Vivado Design Suite (WP416),” 2012. https://docs.amd.
com/v/u/en-US/wp416-Vivado-Design-Suite.

[27] L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han,
Y. Cho, J. H. Kim, Y. Kwon, et al., “Near-memory Processing in
Action: Accelerating Personalized Recommendation with AxDIMM,”
IEEE Micro, vol. 42, 2021.

[28] J. H. Kim, Y. Ro, J. So, S. Lee, S.-h. Kang, Y. Cho, H. Kim, B. Kim,
K. Kim, S. Park, et al., “Samsung PIM/PNM for Transformer Based
AI: Energy Efficiency on PIM/PNM Cluster,” in Proc. 35th IEEE Hot
Chips Symposium (HCS), 2023.

172

